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Abstract. We investigated the impact of uncertainties in neutron-capture and weak reactions
(on heavy elements) on the s-process nucleosynthesis in low-mass stars and massive stars using
a Monte-Carlo based approach. We performed extensive nuclear reaction network calculations
that include newly evaluated temperature-dependent upper and lower limits for the individual
reaction rates. We found β-decay rate uncertainties affect only a few nuclei near s-process
branchings, whereas most of the uncertainty in the final abundances is caused by uncertainties
in the neutron capture rates. We suggest a list of uncertain rates as candidates for improved
measurement by future experiments.

1. Introduction

The s-process nucleosynthesis is a source of
heavy elements beyond iron in the universe,
taking place in stellar burning environments.
There are two astronomical conditions and cor-
responding classes of the s-process (for a re-
view, see Käppeler et al., 2011) and refer-
ences therein). The s-process occurs in (i) ther-
mal pulses of low mass AGB stars produc-
ing heavy nuclei up to Pb and Bi, called the
main s-process; (ii) He-core and C-shell burn-
ing phases of massive stars representing the

lighter components (up to A ≈ 90), categorised
as the weak s-process.

In both cases, the primary mechanism is to
produce heavier elements due to the neutron
capture and β-decay close to valley of stabil-
ity from seed Fe nuclei over a long-term stellar
evolution period. Neutron source reactions for
the s-process are α-captures on different nu-
clei, where 13C(α, n)16O and 22Ne(α, n)25Mg
are main reactions for the main and weak s-
processes, respectively. The impact of these
key fusion reactions has already been studied
(Käppeler et al., 2011). The remaining prob-
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Fig. 1. The results of the MC for the main s-process. Uncertainty range is shown for each isotope with
the shading and red lines, which indicate 5% and 95% of the distribution. Note that the final abundance is
normalised by the value at the peak of the distribution.

lem is the effects of uncertainty of (n,γ) and β-
decay reactions on the final products. As many
of these reactions are involved in the s-process,
the uncertainty is not as simple as the cases of
neutron source/poison reactions. More system-
atic studies based on the Monte-Carlo (MC)
and statistical analysis (Iliadis et al., 2015;
Rauscher et al., 2016) are necessary for such
problems.

In this study, we investigate the impact of
uncertainty due to nuclear physics on the s-
process using the MC-based nuclear reaction
network. Adopting simplified stellar models
that reproduce typical s-process patterns, we
apply realistic temperature-dependent uncer-
tainty of nuclear reaction and decay rates to
nucleosynthesis calculation. Based on an MC
method, we evaluate uncertainty of nucleosyn-
thesis yields.

2. Methods

We use simplified stellar evolution models at
the solar metallicity based on 1D evolution cal-
culation. We follow nucleosynthesis evolution
along temporal history of the temperature and
density from the initial abundances. The ther-
mal evolution is treated as the time evolution
for a “trajectory” as a single fluid component.

We adopt 3M� AGB star model calculated
by the MESA code (Paxton et al., 2011) and
25M� massive star evolution model (Hirschi
et al., 2004; Hirschi et al., 2008). We confirmed
that these trajectories reproduce a typical abun-
dance pattern for the main and weak s-process,
respectively.

We consider that reaction rates have a
temperature-dependent uncertainty due to the
relative contributions by the ground state and
excited states for experimental based cross sec-
tions. Following the prescription in Rauscher
et al. (2011) and Rauscher (2012), experimen-
tal uncertainties are used for the ground state
contributions to (n,γ) rates, whereas a factor 2
is used for excited state uncertainties (for de-
tails, see Rauscher, 2012). As theoretical cal-
culated rates may have large uncertainty, we
simply apply a constant value 2.

A similar approach is used for β-decay
rates, based on partition functions to consider
excited state contribution. The uncertainty at
lower temperatures (T < 107 K) corresponds
to the ground state value, while the uncertainty
becomes larger as the temperature increases.
We adopt a factor 10 for the maximum value
at a high temperature, although uncertainty is
about 2 in stellar burning temperatures.
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Fig. 2. The same as Fig.1, but the results of weak
s-process. Taken from Nishimura et al. (2017).

3. Results of MC calculations

We performed MC simulations with variation
of reaction rates. A uniform random distribu-
tion between the upper and lower limit of the
reaction rate at a given temperature was used
for each variation . Fig. 1 shows the resulting
production uncertainty of main s-process for
the cases where we varied all (n,γ) reactions
and β-decays. For the main s-process, we se-
lect abundance uncertainties for 116 stable s-
process isotopes up to bismuth. Since the num-
ber of nuclei produced by the s-process ex-
ceeds 200 species, we only select isotopes that
contribute a minimum of 10% to the total ele-
mental abundance. The colour distribution cor-
responds to the normalised probability density
distribution of the uncertainty in the final abun-
dance.

Fig. 2 shows the resulting production un-
certainty of weak s-process (Nishimura et al.,
2017). We select in this case abundance un-
certainties for stable s-process isotopes up to
∼ 90.

The stored MC data allow us for a more
comprehensive analsysis and a fully automated
search for key rates. Since the variation factors
for each rate are saved in the stored variation, it
can be tested whether there is a correlation be-

tween the variation of a rate and the resulting
change in abundance. The correlation will be
larger the fewer reactions contribute to the un-
certainty of the abundance of a given isotope.
There are various definitions for correlations in
the literature. We employ a widely-used corre-
lation coefficient, the Pearson product-moment
correlation coefficient (Pearson, 1895).

Review of the available literature suggests
that a Pearson product-moment correlation co-
efficient value above 0.7 indicates a strong cor-
relation. We choose a threshold of 0.65 to ac-
count for numerical uncertainties in our cal-
culations. Therefore we define key rates, rates
with a value above 0.65 in our MC run.

In Table 1, we compare the correlation co-
efficient for the key reactions for the main s-
process which are also relevant for the weak
s-process. Not all of the latter are above the
established threshold, but we decide to show
them to have a comparison.

There are several differences, but we
underline that for example 72Ge(n, γ)73Ge,
78Se(n, γ)79Se and 85Kr(n, γ)86Kr are key rates
with very high correlations, therefore a more
precise measurements of these rates can pro-
vide better nucleosynthesis for both processes.

4. Conclusion

We evaluated the impact on s-process nucle-
osynthesis in massive stars and low mass AGB
stars of nuclear physics uncertainties in neu-
tron capture and weak reactions on heavy el-
ements using MC calculations. Our method is
a robust way to identify key reaction rates to
support further investigations in nuclear astro-
physics regarding the s-process. The method
can identify the importance of reactions and we
found that 72Ge(n, γ)73Ge, 78Se(n, γ)79Se and
85Kr(n, γ)86Kr are key rates with very high cor-
relations for both weak s-process and main s-
process. More detailed analysis are presented
in Nishimura et al. (2017) for s-process in mas-
sive stars; whereas for the main s-process, they
will be shown in our upcoming Cescutti et al.
(2017).
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Table 1. First column: key rates determining the production uncertainties for the main s-process,
and also important for the weak s-process; second column: isotopes for which the rate is highly
correlated in the main s-process production; third column: value of this correlation; fourth col-
umn: isotopes for which the rate is correlated in the weak s-process production; fifth column:
value of this correlation.

Key rates Nuclide rcor,0 Nuclide rcor,0
main s- main s- weak s- weak s-

72Ge(n, γ)73Ge 72Ge -0.93 72Ge -0.85
74Ge(n, γ)75Ge 74Ge -0.97 74Ge -0.44
75As(n, γ)76As 75As -0.86 75As -0.50
78Se(n, γ)79Se 78Se -0.96 78Se -0.71
84Kr(n, γ)85Kr 84Kr -0.99 84Kr -0.49
85Kr(n, γ)86Kr 86Kr 0.88 86Kr 0.84
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